
GET READY TO GO GLOBAL

FOR SOFTWARE
INTERNATIONALIZATION

5 SMART STEPS

Being Global-Ready

Thinking about launching your software in
multiple language markets? Leading CTOs
and development managers set their teams
up for success with these proven best
practices for software internationalization.

In today’s global marketplace, a successful business strategy
includes effectively selling your products and services across
multiple language markets. Additional language markets mean
more revenue, faster.

To meet global business needs, software internationalization
is the smart way to go. Internationalization (sometimes
abbreviated “i18n”) is the process of getting your software ready
for localization into specific languages. The more thoroughly
you prepare your software code for localization, the more
smoothly and quickly you can launch your software products in
target markets around the world.

Even if your international sales plans are in the future, or
your exit strategy is acquisition, developing software that is
ready for localization means you’re building an asset with the
greatest possible business value. Additionally, if you anticipate
competitors in your market space, localization-ready code can
create an important competitive barrier.

The good news is that some advance planning and
development discipline can help you maximize ROI on your
core product, and accelerate your successful international
launch. Begin now and follow these 5 smart steps for software
internationalization. Note that following these steps in order
is the ideal scenario, but sometimes unrealistic or not feasible
if you’ve already launched your software. Regardless, even
tackling a few steps, in order or not, will help make your
software localization process smoother and more cost effective.

2

3

1. Plan for localization
Start communicating your plan for internationalization as soon
as possible to streamline your time-to-market. Involve your
development team and other stakeholders in the discussion right
from the start.

• Write being “global-ready” into your core product
strategy and convey it to your team. Tell your developers
from the outset that they’re developing a product with
international sales potential. It’s essential that you integrate
internationalization guidelines for development into your
workflow now. Writing your code to support language and locale
flexibility when the slate is clean will save you significant time
and money later. Or, if you’re refactoring legacy code, use that
opportunity for internationalization of the software to ease your
transition to going global.

• Start working with your translation and localization
agency now, even before your source content is ready for
translation. The sooner you can get expert input, the better
and less costly your project will be. The right agency for your
project will truly take a partnership approach, helping you plan
for localization according to your business goals. This includes
taking into account budget timeline, available language assets
and other money-saving opportunities before project kick-off.
Ask your agency for ideas to make the process more efficient.
Brainstorm with your development team as well. For example,
which is best for your development team’s workflow: a daily
bug report from your agency, or having bugs entered directly
into your database? The right agency will find ways to efficiently
integrate their contribution into the workflow your team is using.

4

• Get all stakeholders on board as early as possible. This
includes marketing, sales, finance, investors, documentation,
training, customer support, and QA/QC teams. Once your
revenue and infrastructure teams know you’ve got a solid plan
for delivering a global-ready product, the more support they
can provide on the business side. International success is a
win for everyone. Talk with them about quantifiably prioritizing
international markets, analyzing customer potential, defining
the competitive landscape, and other new market issues. This
planning will help ensure your development team has the
budget and resources needed to deliver localization-ready code.

Now it’s time to roll up your sleeves and have your development
team implement the following guidelines for internationalization.

2. Take the text out of the code
The first major step in preparing software for localization is to
separate the text from the code.

• Externalize any translatable text into resource files,
message catalogs or any other suitable string file. Any text
object or value needing translation is better not being included
in the code files. Why? Because your code is safest when only
developers – and not localizers – can edit it. Additionally, the
localization team’s work goes faster and is more accurate if they
have a complete set of strings and don’t have to worry about
messing up the code.

 Next, install any localized files in a locale-specific file structure,
or name them with a locale-specific suffix. This is an essential
internationalization practice that allows you to maintain a single
source code version for all languages, where only the resource
files will use different languages. This practice cuts down the
localization costs dramatically, as it allows programmers to focus
on what they are best at: creating code.

5

• Exclude invariant textual objects from localization. For
example, it is generally advisable not to translate the following:

– User names, group names, and passwords
– System or host names
– Names of terminals (/dev/tty*), printers and special devices
– Shell variables and environment variable names
– Message queues, semaphores and shared memory labels
– UNIX commands and command line options (e.g., ls -l is still ls -l

in all locales)
– Commands such as /usr/bin/dos2unix and /usr/ccs/bin/gprof
– Commands that are XPG4-compliant (in /usr/xpg4/bin/vi) and

have equivalent non-XPG4 commands; non-XPG4 commands
that are not fully internationalized. For example, /usr/bin/vi
does not process non-EUC codesets, but /usr/xpg4/bin/vi is fully
internationalized and can process characters in any locale

– Some GUI textual components, such as keyboard mnemonics
and keyboard accelerators

Instead, externalize only the translatable strings. Clearly identify
objects that should not be translated as “not for translation,”
to ensure that translators or linguists do not accidentally make
changes to the code.

• Always use unique IDs. Do not rely on ‘IF’ conditions,
booleans or on a certain sort order to evaluate string values
in your code. Assign a fixed and unique ID to each and every
translatable string.

6

3. Set coding standards
You’ll save a lot of time and effort if you establish coding methods
early on to support multiple languages and character sets.

• Use Unicode functions and methods to support virtually
all languages or virtually any script. Applications that store
and retrieve text data must allow for input, output, and display
of all the characters from any given language. Using Unicode
encoding, particularly UTF-8, solves the problem of unsupported
character sets and the potential corruption of special characters
and accents, including single and double byte languages, as well
as right-to-left or bi-directional ones. When you don’t use this
approach, the likelihood of corrupted characters increases. This,
in turn, creates problems deeper than displaying in the wrong
way since corrupted characters can disrupt code function.

• Choose only Unicode-supported third party software.
Your third-party software products and components need to
comply with standard internationalization practices. Not using
internationalization-ready software can slow or block your
global-readiness. If globalization is in your expansion plans,
make sure your vendors are ready to support you.

4. Prepare strings for localization
The core of internationalization is to use best practices in handling
text strings. The cleaner your strings, the easier and more error-
free your localization process will be later.

• Allow for text expansion in messages, especially for GUI
items. Most of your target languages will require more space,
sometimes up to 30-100 percent more.

 Here are some Microsoft translations into German that help
illustrate this:

 Link – Verknüpfung
 Login – Anmeldung
 BAM (Business Activity Monitoring) – Geschäftsaktivitätsüberwachung

 Try to place labels above controls, not beside them, so that the
labels have room to expand.

 �TIP:�keep�the�string�length�well�below�your�field�limit�to�account�
for�the�extra�characters�that�may�be�needed.

7

Text expansion will affect layout.
Plan for text expansion at the
following rates:

0-10 characters = +101-200%

11-20 characters = +81-100%

21-30 characters = +61-80%

31-50 characters = +41-60%

50-70 characters = +31-40%

More than 70 characters = +30-%

• Avoid text in icons and bitmaps. As described above,
translated text may be too long to fit. This can lead to text
truncation in displayed images.

• Avoid variables if possible. During translation, variables
raise queries as to the gender and single/plural form of the
substituted words, making it very difficult to translate accurately
on the first attempt any sentences that incorporate those
variables.

• If variables must be used, offer a list of replacements.
Consider all possibilities and allow for gender and plural
variations in the translation of the sentences that contain
variables. From an internationalization point of view, a higher
number of strings is preferable to taking the chances of using
the wrong or less suitable form.

• Avoid concatenation. Use complete sentences instead, even
if that means repeating segments. Concatenation can work for a
single language, when word order is predictable. However, word
orders vary widely from one language to another. This means
string concatenation in the source could render nonsense
phrase structures in the localized compiled build that would
require tracking, rework and a substantial additional cost.

• Replace hard returns in the middle of sentences with
break tags or soft returns. Hard carriage returns a signal that
the sentence has ended to the translation memory tools used by
your translation and localization agency. Inserting hard returns
into the middle of a sentence leads to incomplete sentences in
the translation database and corrupts the sentence structure
in the translated files. Use break tags (such as
) or a
soft return.

• Consider additional breaks for your target languages.
Sentence structure changes in different languages, as well
as the length of sentence parts. Therefore, additional breaks
and shorter concise sentences may make your code easier
to localize.

• To set up your project for efficient localization, provide
context and don’t alphabetically sort strings in string
tables and resource bundles. Offer as much context as you
can with the externalized strings. This helps your translation
and localization agency better adapt the translation to that
context. No context means it takes longer to verify and correct
your translations. Provide context easily by giving your agency
access to the actual product, screenshots, documentation, help
files, commented strings, and other product elements. Avoid
alphabetical sorting because ordering in your source language
will not automatically work in your target languages.

8

5. Test, fix, iterate
Before you even localize, you can do a test-run of the localization
process. This will help you fix any bugs so that the actual
localization can go more smoothly.

• Make the most out of pseudo-translation. Pseudo-
translation is the process of replacing or adding special
characters to your software string to find bugs, and then
compiling it as well as running it through your normal
QA processes. This allows you to predict and correct
internationalization issues in the source even before starting
localization. To detect character encoding issues and hard-
coded text remaining in source files, testers use pseudo-
translation to easily track errors. It is also used to identify text
inflation and avoid truncation during testing. Work with your QA
team and your translation and localization agency to incorporate
pseudo-translation into your process.

• Check symbols for cultural connotations before you
standardize. Before launching your new release to your
target markets, verify that all images and symbols are culturally
appropriate for each locale. Do they lead to respective
connotations to make the relevant impact? Do they convey the
right message about your brand? Do they damage your brand
in the target market? Your translation and localization agency
or an independent reviewer can help you with a cultural audit.

Follow these guidelines to expedite software localization and
speed your product launch. You’ll reduce your testing, rework
and other quality assurance costs. What’s more, the culturally
tailored, tighter product you’ll launch will be more successful
in your target markets.

Pseudo-translation in action!

Here’s an example of a few strings from a C resource file, with their
respective pseudo-translations in Japanese:

IDS_TITLE_OPEN_SKIN “Select Device”
IDS_TITLE_OPEN_SKIN “日本SイlイctDイvウcイ本日”
IDS_MY_OPEN “&Open”
IDS_MY_OPEN “日本&Opイn日”

In these strings, Japanese characters replace the vowels in all English
words. After compilation, testers are easily able to detect corrupt
characters (junk characters replacing the Japanese characters), or strings
that remain fully in English (source strings still embedded in the code).

9

We make it easy for businesses to grow globally and connect with
expert talent anywhere in the world. With production centers in
Europe, the Americas, and Asia, we follow a strategy of building
robust programs for continuous translation and localization.

You can expect a long-term and transparent partnership, backed by
innovative solutions around technology, AI & data, creative content,
and quality assurance.

For more information and contact details visit our website at
www.argosmultilingual.com

About Argos
Argos Multilingual provides global language solutions. With
over 30 years of experience, we serve clients in the high-tech,
life sciences, human resources, and financial industries.

10

